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Abstract—Estimation of the parameters of the Arrhenius equation often leads to multicollinearity, or, in other
words, a degenerate set of equations in the least-squares procedure. This circumstance makes it difficult to esti-
mate the unknown parameters. Simple expedients for model modification are suggested that reduce multicol-
linearity, thus allowing the parameters to be determined. Simulated and real examples are considered.

The same physical law can be represented in differ-
ent ways. It is assumed that the kind of model and the
degree of detailing for each particular process are cho-
sen by the researcher. At the same time, in processing
experimental data to obtain a quantitative estimate, the
mathematical representation is also significant. Obvi-
ously, the way the equation is written cannot modify the
law, but it can strongly influence the estimation of the
model parameters. Here, we consider this methodolog-
ical issue for the Arrhenius equation

E
k = koexp( RT)’ D
which is widely used in chemical kinetics to describe
the dependence of the reaction rate constant k£ on tem-
perature 7. This equation contains one constant (the
universal gas constant R) and two unknown parameters,
namely, a preexponential factor k, and an activation
energy E, which are to be derived from experimental
data, for example, by the least-squares method. This is
the so-called inverse problem of chemical kinetics.

It is well known that the Arrhenius equation in the
form of Eq. (1) often leads to strongly correlated esti-
mates of k, and E. The probability ellipse of these esti-
mates is very strongly elongated: the ratio of its princi-
pal axes is of the order of 10%°. Therefore, the surface of
the objective function (sum of squares) is degenerate,
making the inverse problem difficult to solve. The min-
imum point is indeterminate, and it is impossible to
estimate the parameters. In the general case, the degree
of this degeneracy, which is called multicollinearity [1],
can be characterized by the spread

N(A) = lOg xmax - IOg 7\’min >

where A is the matrix of the second derivatives of the
objective function with respect to the parameters and
Amax and A;;, are the maximum and minimum eigenval-

ues of this matrix. The larger N(A), the worse condi-
tioned the matrix A and the more difficult it is to invert.

The problem of multicollinearity can be viewed
from different standpoints. In linear modeling, it shows
itself as a very large number of unknown parameters
[2]. Therefore, we will use methods reducing the
dimensionality of the problem, specifically, principal
component regression and projection on latent struc-
tures. In nonlinear regression analysis, one usually has
insufficient experimental data rather than excess
parameters [3]. As regards the Arrhenius equation, this
insufficiency arises from the narrow range of measured
temperatures: in solid-phase kinetic measurements, this
range is generally 300-500 K. In terms of reciprocal
temperature, this range is as narrow as 0.0013. Obvi-
ously, this value depends on the temperature unit cho-
sen, the way Eq. (1) is written, and other circumstances.
We will focus on these circumstances, suggesting spe-
cial methods for solving the problem of multicollinear-
ity in nonlinear regression.

The problem of multicollinearity has a computa-
tional aspect associated with the precision of number
representation in the computer. A number is repre-
sented as a sequence of zeros and unities (bits) in a
computer word. Although this word can be rather long,
its length may nevertheless be insufficient and some
significant digits may be lost in the course of calcula-
tions. This is the case when a very small number is
added to a very large number, as in the following exam-
ple: 100+ 102° + ... + 1072° = 10*?°. This very situa-
tion takes place when a matrix with a large spread of
eigenvalues is inverted. There are special expedients to
modify the original problem so that the spread N(A) is
substantially reduced. They do not alter the essence of
the problem to be solved, but they allow the problem to
be reformulated so as to facilitate computer calcula-
tions.

Let us return to the Arrhenius equation. The simplest
model temperature dependence of the rate constant is
plotted in Fig. 1. With Eq. (1), the inverse kinetic prob-
lem is very stiff: the spread of eigenvalues is as wide as
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Fig. 1. Simulated example of the temperature dependence
of the rate constant.

19 decimal orders of magnitude. Changing to the con-
ventional coordinates (Ink, 1/7) diminishes the spread
of eigenvalues to nine orders of magnitude. Note that
this change means a k, —= ¢ = Ink, change of variables
and reduces model (1) to k = exp(q — E/RT). The pur-
pose of this transformation is very clear: while the ini-
tial parameter is as large as k, = 2.80 x 10'!, the new
parameter is g = 26.36. However, the second parameter,
E, is still much different from the first. This situation
can be remedied by scaling the temperature: 7 — X =
Ey/RT. The scaling factor is taken to be E, = 6.13 x 10%,
so that the variation of the new predictor X is unity. The
Arrhenius model will then take the form k = exp(q —
bX), where the new parameter b is related to the origi-
nal parameter E by the formula b = E/E, = 1.41. The
spread of eigenvalues with this model is five orders of
magnitude. Although it can be regarded as very good, it
can be further decreased. To do this, we will apply the
predictor centering X — X' = X — X,, setting X, =
19.62, so that the mean value of the new parameter X' is
zero. After that, the Arrhenius model appears as

k = exp(a-bX"), 2)

where the new parameter a is related to the initial
parameters &, and E by the formula a = g — bX, = In(k;) —
(E/Ep)X, = —1.00. With this model, the spread of eigenval-
ues is equal to unity, the minimum possible value. The
inverse transformations appear as k, = exp(a + bX;) and
E = DE,. A similar expedient was used by Chen [4].

This example demonstrates that, using simple trans-
formations, one can bring the original, “physical”
model (1) to a new mathematical form (Eq. (2)),
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Fig. 2. Elongation at break for aged rubber and fitting
curves at (1) 110, (2) 125, and (3) 140°C.

thereby circumventing all of the difficulties arising
from multicollinearity. It is important that the transfor-
mation of the initial data and model in no way affects
the estimation accuracy. The standard deviations for the
estimates of a and b in model (2) are 0.070 (7%) and
0.072 (5%), respectively, the correlation coefficient
being 0.005. Converting these deviations into the stan-
dard deviation for the initial parameter k, gives a value
of 3.95 x 10", which is 141% of the initial value
2.80 x 10'". The same standard deviation is obtained by
direct calculations using model (1).

Now consider processing of real data for accelerated
thermal aging of tire rubber [5]. Figure 2 shows how
elongation at break (ELB) varies with time at three tem-
peratures. The ELB curves are described by the model

ny kot
ELB = co+cie ' +c,e 7,

where ¢ is time and the constants k; and &, depend on
temperature in the Arrhenius way. Here, solving the
inverse problem implies determining seven unknowns,
namely, three shape parameters and four Arrhenius
parameters. With Eq. (1), the problem will be multicol-
linear, with a spread of N(A) =27, and it will be impos-
sible to estimate the parameters. Note that passing to
the conventional coordinates (Ink, 1/7) is impossible
here. With Eq. (2), the spread is much smaller, N(A) =
9, and all of the estimates can be found.

The same approach can be taken in modeling
nonisothermal processes. For example, the following
model is used to determine the oxidation onset temper-
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Fig. 3. DSC data for polypropylene and regression curves
corresponding to heating rates (v) of (1) 20, (2) 15, (3) 10,
(4) 5, and (5) 2 K/min.

ature (OOT) from differential scanning calorimetry
(DSC) data [3]:

0, T<T

y=fo+

mcexp(—RET), T>T,,

de _ Ko (_E)
where dT \4 p RT
o(T,) = 0.

Here, y is the observed DSC signal. This model
includes three independent variables. They are heating
rate v; sample weight m, and temperature 7. Further-
more, it includes four unknown parameters: preexpo-
nential factor k, activation energy E, OOT value T, and
baseline parameter f,,. The last two parameters depend
on the heating rate v.

Figure 3 presents DSC data for polypropylene heated
at different rates, including OOT points for each v. If
these data are described in terms of Eq. (3), it is impossi-
ble to estimate the unknown parameters because the
spread of eigenvalues is very large: N(A) > 30. The trans-
formation k, — ¢ = In(k,) reduces the spread to 11;
subsequent scaling further reduces the spread to 8; and,
finally, centering results in a spread of 4.

Deviations from the Arrhenius law are observed in
some cases. From the theoretical standpoint, they are
due to the fact that Eq. (1) neglects the temperature
dependence of the preexponential factor k,. However,
this dependence must take place, as is made clear by

KINETICS AND CATALYSIS  Vol. 46

No. 3 2005

307
Ink [s~] E, kJ/mol
~6
6.0 -
45
E
56 ’
"""""""" 94
2
52F 43
X, !
4.8 : o—L ;
0.40 0.44 0.48 0.52

X=/T)x 10°R!

Fig. 4. (1) Logarithm of the rate constant and (2) effective acti-
vation energy for low-temperature methyl methacrylate poly-
merization as a function of reciprocal temperature 1/7 [6].

taking into account the partition functions for the acti-
vated complex and the initial reactants. Moreover, it is
likely that the activation energy E will also depend on
temperature. By way of example, we present the tem-
perature dependence of the rate constant for low-tem-
perature methyl methacrylate polymerization (Fig. 4)
[6]. This dependence is not linear: the slope of the curve
increases with increasing temperature; that is, the acti-
vation energy grows with increasing temperature. To
take into account this circumstance, it is necessary to
modify the Arrhenius equation by introducing an E(7)
function. Using the above expedients, we can write the
equation for k(7) as

Ink =a-EX', E=b+cln(l1+X), 4)

where X' = X/X,— 1 and X = 10°/RT. Again, X, is set so
that the mean value of the predictor X' is zero. The
model formulated as Eq. (4) is characterized by an
eigenvalue spread as small as N(A) = 4, and all of its
parameters—a, b, and c—are easy to estimate. Figure 4
plots Ink (left axis of ordinates) and E (right axis of
ordinates) as functions of X. Here, E|, is the activation
energy determined using the “classical” Arrhenius
equation (1). Note that it is equal to the E value at the
middle point of the X axis; that is, E(X,) = E,,.

Modeling using the Arrhenius equation suffers from
multicollinearity or degeneracy. As a consequence, it is
impossible to estimate the parameters of the model.
There are three basic sources of multicollinearity: the
representation of the model, the accuracy of calcula-
tions, and the quality of experimental data. The expedi-
ents suggested here for model and data modification



308 RODIONOVA, POMERANTSEV

allow the degeneracy to be markedly reduced and the
parameters to be estimated. The calculations were car-
ried out using the Fitter system [7]. All necessary data
and computational details can be found in [8].
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